Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C.
نویسندگان
چکیده
ZEBRA protein converts Epstein-Barr virus (EBV) infection from the latent to the lytic state. The ability of ZEBRA to activate this switch is strictly dependent on the presence of serine or threonine at residue 186 of the protein (A. Francis, T. Ragoczy, L. Gradoville, A. El-Guindy, and G. Miller, J. Virol. 72:4543-4551, 1999). We investigated whether phosphorylation of ZEBRA protein at this site by a serine-threonine protein kinase was required for activation of an early lytic cycle viral gene, BMRF1, as a marker of disruption of latency. Previous studies suggested that phosphorylation of ZEBRA at S186 by protein kinase C (PKC) activated the protein (M. Baumann, H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, R. Zeidler, H. J. Delecluse, and W. Hammerschmidt, J. Virol 72:8105-8114, 1998). Two residues of ZEBRA, T159 and S186, which fit the consensus for phosphorylation by PKC, were phosphorylated in vitro by this enzyme. Several isoforms of PKC (alpha, beta(1), beta(2), gamma, delta, and epsilon ) phosphorylated ZEBRA. All isoforms that phosphorylated ZEBRA in vitro were blocked by bisindolylmaleimide I, a specific inhibitor of PKC. Studies in cell culture showed that phosphorylation of T159 was not required for disruption of latency in vivo, since the T159A mutant was fully functional. Moreover, the PKC inhibitor did not block the ability of ZEBRA expressed from a transfected plasmid to activate the BMRF1 downstream gene. Of greatest importance, in vivo labeling with [(32)P]orthophosphate showed that the tryptic phosphopeptide maps of wild-type ZEBRA, Z(S186A), and the double mutant Z(T159A/S186A) were identical. Although ZEBRA is a potential target for PKC, in the absence of PKC agonists, ZEBRA is not constitutively phosphorylated in vivo by PKC at T159 or S186. Phosphorylation of ZEBRA by PKC is not essential for the protein to disrupt EBV latency.
منابع مشابه
Inhibition of Epstein-Barr virus (EBV) reactivation by short interfering RNAs targeting p38 mitogen-activated protein kinase or c-myc in EBV-positive epithelial cells.
Latent Epstein-Barr virus (EBV) is reactivated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in EBV-infected cells. In this study, we found that TPA up-regulated phosphorylation of p38, a mitogen-activated protein kinase, and activated c-myc mRNA in EBV-positive epithelial GT38 cells. The EBV immediate-early gene BZLF1 mRNA and its product ZEBRA protein were induced following TPA treatment. Pro...
متن کاملSerine-173 of the Epstein-Barr virus ZEBRA protein is required for DNA binding and is a target for casein kinase II phosphorylation.
An Epstein-Barr virus-encoded protein, ZEBRA, mediates the switch from latency to the viral lytic life cycle. ZEBRA's domain structure and DNA binding specificity resemble that of cellular transcriptional activators such as c-Fos/c-Jun. We show that ZEBRA, like c-Jun, is phosphorylated by casein kinase II (CKII). The principal site of phosphorylation is serine-173 (S173), five amino acids upstr...
متن کاملActivation domain requirements for disruption of Epstein-Barr virus latency by ZEBRA.
Latent infection of B lymphocytes by Epstein-Barr virus (EBV) can be disrupted by expression of the EBV ZEBRA protein. ZEBRA, a transcriptional activator, initiates the EBV lytic cascade by activating viral gene expression. ZEBRA is also indispensable for viral replication and binds directly to the EBV lytic origin of replication. The studies described herein demonstrate that the activation dom...
متن کاملPhosphorylation of Epstein-Barr virus ZEBRA protein at its casein kinase 2 sites mediates its ability to repress activation of a viral lytic cycle late gene by Rta.
ZEBRA, a member of the bZIP family, serves as a master switch between latent and lytic cycle Epstein-Barr virus (EBV) gene expression. ZEBRA influences the activity of another viral transactivator, Rta, in a gene-specific manner. Some early lytic cycle genes, such as BMRF1, are activated in synergy by ZEBRA and Rta. However, ZEBRA suppresses Rta's ability to activate a late gene, BLRF2. Here we...
متن کاملTHE IN VITRO GROWTH PROPERTIES OF CELL LINES FROM EPSTEIN-BARR VIRUS-INDUCED TAMARIN TUMORS AND TAMARIN B CELLS TR ANSFORMED BY EPSTEIN BARR VIRUS
EBV-carrying human cell lines, depending on whether the cells are derived from Burkitt's lymphoma (BL) tumor biopsies or transformed by EBV in vitro, have different growth properties in vitro. In contrast, there are no clear differences between tamarin tumor lines and tamarin LCLs in vitro. Both types of tamarin cell lines could grow in agarose and formed colonies unlike human LCLs, althoug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 22 شماره
صفحات -
تاریخ انتشار 2002